Part Number Hot Search : 
CPH5520 LTL2V3 MC130 C100EP C68HC05 ER305 SPLSI1 01070
Product Description
Full Text Search
 

To Download IRF8301MPBF Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
  directfet   power mosfet  description the IRF8301MPBF combines the latest hexfet? power mosfet silicon technology with the advanced directfet tm packaging to achieve very low on-state resistance in a package that has the footprint of an so-8 or a pqfn 5x6mm and only 0.7mm profile. the direct fet package is compatible with existing layout geometries used in power applications, pcb assembly equipment and vapor phase, infra -red or convection soldering techniques, when application note an-1035 is followed regarding the manufacturing methods and processes. t he directfet package allows dual sided cooling to maximize thermal transfer in power systems, improving previous best thermal resi stance by 80%. the IRF8301MPBF balances both low resistance and low charge along with ultra low package inductance to reduce both conduction a nd switching losses. the reduced total losses and very high current carrying capability make this product ideal for power tools. applicable directfet outline and substrate outline (see p.7,8 for details)  fig 1. typical on-resistance vs. gate voltage  

       fig 2. typical total gate charge vs. gate-to-source voltage directfet  isometric   ultra-low r ds(on)  low profile (<0.7 mm)  dual sided cooling compatible   ultra-low package inductance  optimized for high speed switching or high current switch (power tool)  low conduction and switching losses  compatible with existing surface mount techniques  sq sx st mq mx mt mp 0 102030405060 q g , total gate charge (nc) 0.0 1.0 2.0 3.0 4.0 5.0 v g s , g a t e - t o - s o u r c e v o l t a g e ( v ) v ds = 24v v ds = 15v i d = 25a v dss v gs r ds(on) r ds(on) 30v max 20v max 1.3m ? @10v 1.9m ? @ 4.5v 
        
   absolute maximum ratin g s parameter units v gs gate-to-source voltage i d @ t a = 25c continuous drain current, v gs @ 10v i d @ t a = 70c continuous drain current, v gs @ 10v a i d @ t c = 25c continuous drain current, v gs @ 10v  i dm pulsed drain current  e as sin g le pulse avalanche ener gy  mj i ar avalanche current  a 25 max. 27 192 250 20 34 260 0 5 10 15 20 v gs, gate -to -source voltage (v) 0 1 2 3 4 5 6 t y p i c a l r d s ( o n ) ( m ? ) i d = 32a t j = 25c t j = 125c ordering information orderable part number form quantity IRF8301MPBF directfet mt tape and reel 4800 irf8301mtrpbf base part number package type standard pack

   
      static @ t j = 25c (unless otherwise specified) parameter min. typ. max. units bv dss drain-to-source breakdown voltage 30 ??? ??? v ? v dss / ? t j breakdown voltage temp. coefficient ??? 21 ??? mv/c r ds(on) static drain-to-source on-resistance ??? 1.3 1.5 m ? ??? 1.9 2.4 v gs(th) gate threshold voltage 1.35 1.7 2.35 v ? v gs(th) / ? t j gate threshold voltage coefficient ??? -6.0 ??? mv/c i dss drain-to-source leakage current ??? ??? 1.0 a ??? ??? 150 i gss gate-to-source forward leakage ??? ??? 100 na gate-to-source reverse leakage ??? ??? -100 gfs forward transconductance 150 ??? ??? s q g total gate charge ??? 51 77 q g s1 pre-vth gate-to-source charge ??? 12 ??? q gs2 post-vth gate-to-source charge ??? 5.4 ??? nc q gd gate-to-drain charge ??? 16 ??? q g odr gate charge overdrive ??? 18 ??? see fig. 15 q sw switch charge (q gs2 + q gd ) ??? 21 ??? q oss output charge ??? 28 ??? nc r g gate resistance ??? 1.0 3.0 ? t d( on) turn-on delay time ??? 20 ??? t r rise time ??? 30 ??? ns t d ( off ) turn-off delay time ??? 25 ??? t f fall time ??? 17 ??? c iss input capacitance ??? 6140 ??? c oss output capacitance ??? 1270 ??? pf c rss reverse transfer capacitance ??? 590 ??? diode characteristics parameter min. typ. max. units i s continuous source current ??? ??? 110 (body diode) a i sm pulsed source current ??? ??? 250 (body diode)  v sd diode forward voltage ??? 0.77 1.0 v t rr reverse recovery time ??? 27 41 ns q rr reverse recovery charge ??? 45 68 nc ? = 1.0mhz v ds = 16v, v gs = 0v conditions v gs = 0v, i d = 250a reference to 25c, i d = 1ma v gs = 10v, i d = 32a  v gs = 4.5v, i d = 25a  mosfet symbol r g = 1.8 ? v ds = 15v, i d = 25a conditions v ds = v gs , i d = 150a t j = 25c, i f = 25a v gs = 4.5v i d = 25a v gs = 0v v ds = 15v i d = 25a v dd = 15v, v gs = 4.5v  v gs = 20v v gs = -20v di/dt = 500a/s  t j = 25c, i s = 25a, v gs = 0v  showing the integral reverse p-n junction diode. v ds = 24v, v gs = 0v v ds = 15v v ds = 24v, v gs = 0v, t j = 125c see fig. 17  click on this section to link to the appropriate technical paper.  click on this section to link to the directfet website.   surface mounted on 1 in. square cu board, steady state.  t c measured with thermocouple mounted to top (drain) of part.   repetitive rating; pulse width limited by max. junction temperature.  starting t j = 25c, l = 0.82mh, r g = 25 ? , i as = 25a.  pulse width 400s; duty cycle 2%.  

   
       absolute maximum ratin g s parameter units p d @t a = 25c power dissipation w p d @t a = 70c power dissipation p d @t c = 25c power dissipation  t p peak soldering temperature c t j operating junction and t stg storage temperature range thermal resistance parameter typ. max. units r ja junction-to-ambient  ??? 45 r ja junction-to-ambient  12.5 ??? r ja junction-to-ambient  20 ??? c/w r jc junction-to-case  ??? 1.4 r j-pcb junction-to-pcb mounted 1.0 ??? linear derating factor  w/c 0.022 270 -40 to + 150 max. 89 2.8 1.8 fig 3. maximum effective transient thermal impedance, junction-to-ambient  1e-006 1e-005 0.0001 0.001 0.01 0.1 1 10 100 1000 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 100 t h e r m a l r e s p o n s e ( z t h j a ) 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthja + tc fig 4. maximum effective transient thermal impedance, junction-to-case 1e-006 1e-005 0.0001 0.001 0.01 0.1 1 t 1 , rectangular pulse duration (sec) 0.001 0.01 0.1 1 10 t h e r m a l r e s p o n s e ( z t h j c ) c / w 0.20 0.10 d = 0.50 0.02 0.01 0.05 single pulse ( thermal response ) notes: 1. duty factor d = t1/t2 2. peak tj = p dm x zthjc + tc

   
        used double sided cooling , mounting pad with large heatsink. mounted on minimum footprint full size board with metalized back and with small clip heatsink. 
r is measured at t j of approximately 90c.  surface mounted on 1 in. square cu (still air).      ! with small clip heatsink (still air)  mounted on minimum footprint full size board with metalized back and with small clip heatsink (still air)

   
      " fig 6. typical output characteristics fig 5. typical output characteristics fig 7. typical transfer characteristics fig 8. normalized on-resistance vs. temperature fig 9. typical capacitance vs.drain-to-source voltage fig 10. typical on-resistance vs. drain current and gate voltage 0.1 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.5v 60s pulse width tj = 25c 2.5v 0.1 1 10 100 v ds , drain-to-source voltage (v) 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) 2.5v 60s pulse width tj = 150c vgs top 10v 5.0v 4.5v 4.0v 3.5v 3.0v 2.8v bottom 2.5v 1.0 1.5 2.0 2.5 3.0 3.5 4.0 v gs , gate-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) t j = 150c t j = 25c t j = -40c v ds = 15v 60s pulse width -60 -40 -20 0 20 40 60 80 100 120 140 160 t j , junction temperature (c) 0.5 1.0 1.5 2.0 t y p i c a l r d s ( o n ) ( n o r m a l i z e d ) i d = 32a v gs = 10v v gs = 4.5v 1 10 100 v ds , drain-to-source voltage (v) 100 1000 10000 100000 c , c a p a c i t a n c e ( p f ) v gs = 0v, f = 1 mhz c iss = c gs + c gd , c ds shorted c rss = c gd c oss = c ds + c gd c oss c rss c iss 0 50 100 150 200 i d , drain current (a) 0 1 2 3 4 5 t y p i c a l r d s ( o n ) ( m ? ) t j = 25c vgs = 3.5v vgs = 4.0v vgs = 4.5v vgs = 5.0v vgs = 8.0v vgs = 10v

   
       fig 14. typical threshold voltage vs. junction temperature fig 13. maximum drain current vs. case temperature fig 11. typical source-drain diode forward voltage fig 12. maximum safe operating area fig 15. maximum avalanche energy vs. drain current 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1 v sd , source-to-drain voltage (v) 0 1 10 100 1000 i s d , r e v e r s e d r a i n c u r r e n t ( a ) t j = 150c t j = 25c t j = -40c v gs = 0v -75 -50 -25 0 25 50 75 100 125 150 t j , temperature ( c ) 0.5 1.0 1.5 2.0 2.5 3.0 t y p i c a l v g s ( t h ) g a t e t h r e s h o l d v o l t a g e ( v ) i d = 100a i d = 150a i d = 250a i d = 1.0ma i d = 1.0a 25 50 75 100 125 150 starting t j , junction temperature (c) 0 200 400 600 800 1000 1200 e a s , s i n g l e p u l s e a v a l a n c h e e n e r g y ( m j ) i d top 2.7a 3.9a bottom 25a 25 50 75 100 125 150 t c , case temperature (c) 0 40 80 120 160 200 i d , d r a i n c u r r e n t ( a ) 0 1 10 100 v ds , drain-to-source voltage (v) 0.1 1 10 100 1000 i d , d r a i n - t o - s o u r c e c u r r e n t ( a ) operation in this area limited by r ds (on) tc = 25c tj = 150c single pulse 100sec 1msec 10msec dc

   
      # fig 16a. gate charge test circuit fig 16b. gate charge waveform fig 17b. unclamped inductive waveforms t p v (br)dss i as fig 17a. unclamped inductive test circuit fig 18b. switching time waveforms fig 18a. switching time test circuit r g i as 0.01 ? t p d.u.t l v ds + - v dd driver a 15v 20v   vds vgs id vgs(th) qgs1 qgs2 qgd qgodr 1k vcc dut 0 l s 20k v ds 90% 10% v gs t d(on) t r t d(off) t f   
 1      0.1 %          + -  

   
      $ fig 19. % &' &( )'  for hexfet  power mosfets       ?       ?   ?         p.w. period di/dt diode recovery dv/dt ripple 5% body diode forward drop re-applied voltage reverse recovery current body diode forward current v gs =10v v dd i sd driver gate drive d.u.t. i sd waveform d.u.t. v ds waveform inductor curent d = p. w . period ***    
   *** + - + + + - - -        ? !"   # $  ?  !   %  &'&& ?     #     (( ? &'&& ) !  '    
 ** * *      **         

 

 

 
   ' ' %+,)   -./ "   ' 00 1 ''(  %+,) )1' '  '  '  '' '0' g = gate d = drain s = source g d dd d s s .2 + 1 '  0 '    '  1233 3 403

   
      5 directfet  part marking   

 

 

 
   ' ' %+,)   -./ "   ' 00 1 ''(  %+,) )1' '  '  '  '' '0' max 0.250 0.199 0.156 0.018 0.032 0.036 0.072 0.040 0.026 0.039 0.104 0.0274 0.0031 0.007 min 6.25 4.80 3.85 0.35 0.78 0.88 1.78 0.98 0.63 0.88 2.46 0.616 0.020 0.08 max 6.35 5.05 3.95 0.45 0.82 0.92 1.82 1.02 0.67 1.01 2.63 0.676 0.080 0.17 min 0.246 0.189 0.152 0.014 0.031 0.035 0.070 0.039 0.025 0.035 0.097 0.0235 0.0008 0.003 code a b c d e f g h j k l m r p dimensions metric imperial .2 + 1 '  0 '    '  1233 3 403

   
      directfet  tape & reel dimension (showing component orientation). .2 + 1 '  0 '    '  1233 3 403 loaded tape feed direction min 7.90 3.90 11.90 5.45 5.10 6.50 1.50 1.50 note: controlling dimensions in mm code a b c d e f g h max 8.10 4.10 12.30 5.55 5.30 6.70 n.c 1.60 min 0.311 0.154 0.469 0.215 0.201 0.256 0.059 0.059 max 0.319 0.161 0.484 0.219 0.209 0.264 n.c 0.063 dimensions metric imperial 8301 ir world headquarters: 101 n. sepulveda blvd., el segundo, california 90245, usa to contact international rectifier, please visit http://www.irf.com/whoto-call/ note: controlling dimensions in mm std reel quantity is 4800 parts. (ordered as irf6726mtrpbf). for 1000 parts on 7" l d irf6726mtr1pbf  
                             
      
 
 
  date comments 09/05/2013 ? added the strongirfet logo on the top of the part number, on page 1. revision history


▲Up To Search▲   

 
Price & Availability of IRF8301MPBF

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X